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Abstract
The equivalence of arbitrary dimensional bipartite states under local unitary
transformations (LUT) is studied. A set of invariants and ancillary invariants
under LUT is presented. We show that two states are equivalent under LUT if
and only if they have the same values for all of these invariants.

PACS numbers: 03.67.−a, 02.20.Hj, 03.65.−w
Mathematics Subject Classification: 94A15, 62B10

Quantum entangled states have been used as the key resources in quantum information
processing and quantum computation [1]. An important property of quantum entanglement
is that the entanglement of a bipartite quantum state remains invariant under local unitary
transformations on the subsystems. Therefore, invariants of local unitary transformations have
special importance. For instance, the trace norms of realigned or partial transposed density
matrices in entanglement measure, and separability criteria are some of these invariants [2].
Two quantum states are locally equivalent if and only if all the invariants have equal values
for these two states. For bipartite mixed states, a generally non-operational method has been
presented to compute all the invariants of local unitary transformations in [3, 4]. In [5], the
invariants for general two-qubit systems are studied and a complete set of 18 polynomial
invariants is presented. In [6], the invariants for three-qubit states have been discussed. A
complete set of invariants for generic mixed states is presented. In [7], the invariants for a class
of non-generic three-qubit states have been investigated. In [8], complete sets of invariants for
some classes of density matrices have been presented. The invariants for tripartite pure states
have been also studied [9].

In [10], a complete set of invariants for generic density matrices with full rank has been
presented. In this letter, we extend the results to generalized generic density matrices with
arbitrary rank, by taking into account the vector space corresponding to the zero eigenvalues.
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Let H be an N-dimensional complex Hilbert space, with |i〉, i = 1, . . . , N , as an
orthonormal basis. Let ρ be a density matrix defined on H ⊗ H with rank(ρ) = n � N2. It
can be written as

ρ =
n∑

i=1

λi |vi〉〈vi |,

where |vi〉 is the eigenvector with respect to the nonzero eigenvalue λi . |vi〉 has the form

|vi〉 =
N∑

k,l=1

ai
kl|kl〉, ai

kl ∈ C,

N∑
k,l=1

ai
kla

i∗
kl = 1, i = 1, . . . , n.

Let Ai denote the matrix given by (Ai)kl = ai
kl . We introduce {ρi}, {θi},

ρi = Tr2|vi〉〈vi | = AiA
†
i , θi = Tr1|vi〉〈vi | = At

iA
∗
i , i = 1, 2, . . . , n, (1)

where Tr1 and Tr2 stand for the traces over the first and second Hilbert spaces, and At and A∗

are the transpose and the complex conjugate of A, respectively.
Two density matrices ρ and ρ ′ are said to be equivalent under local unitary transformations

if there exist unitary operators U1 (resp. U2) on the first (resp. second) space of H ⊗ H such
that

ρ ′ = (U1 ⊗ U2)ρ(U1 ⊗ U2)
†. (2)

Let �(ρ) and �(ρ) be two ‘metric tensor’ matrices, with entries given by

�(ρ)ij = Tr(ρiρj ), �(ρ)ij = Tr(θiθj ), for i, j = 1, . . . , n. (3)

We call a mixed state ρ a generic one if �,� satisfy

det(�(ρ)) �= 0 and det(�(ρ)) �= 0. (4)

In [10], it has been shown that two full-ranked bipartite states (n = N2) satisfying (4) are
equivalent under local unitary transformations if and only if they have the same values of the
following invariants: �, �,

X(ρ)ijk = Tr(ρiρjρk), Y (ρ)ijk = Tr(θiθj θk), i, j, k = 1, . . . , n, (5)

together with the condition

J s(ρ) = Tr(ρs), s = 1, 2, . . . , N2, (6)

which guarantee that the density matrices have the same set of eigenvalues.
For the case n < N2, the invariants (3), (5) and (6) are no longer enough to verify the

equivalence of two generic states under local unitary transformations, and some ancillary
invariants are needed.

From the generic condition det(�(ρ)) �= 0 and det(�(ρ)) �= 0, we have that {ρi, i =
1, . . . , n} and {θi, i = 1, . . . , n} are two sets of linear independent matrices. One can always
find some N × N matrices ρi, θi (we call them ancillary matrices), i = n + 1, . . . , N2, such
that {ρi, i = 1, . . . , N2} and {θi, i = 1, . . . , N2} span the N2 ×N2 matrix space, respectively.
Therefore, the N2 × N2 matrices �̃(ρ) and �̃(ρ),

�̃(ρ)ij = Tr(ρiρj ), �̃(ρ)ij = Tr(θiθj ), i, j = 1, . . . , N2, (7)

satisfy

det(�̃(ρ)) �= 0 and det(�̃(ρ)) �= 0. (8)

Set

X̃(ρ)ijk = Tr(ρiρjρk), Ỹ (ρ)ijk = Tr(θiθj θk), i, j, k = 1, . . . , N2. (9)
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We call �̃(ρ)ij , �̃(ρ)ij , X̃(ρ)ijk, Ỹ (ρ)ijk , with at least one of their sub-indices taking
values from n + 1 to N2, the ancillary invariants.

Theorem. Two generic density matrices are equivalent under local unitary transformations
if and only if there exists a ordering of the corresponding eigenstates such that the following
invariants have the same values for both density matrices:

J s(ρ) = Tr(ρs), s = 1, 2, . . . , N2, �̃(ρ), �̃(ρ), X̃(ρ), Ỹ (ρ). (10)

Proof. Suppose that ρ and ρ ′ are equivalent under local unitary transformation µ ⊗ ω,
ρ ′ = µ ⊗ ωρµ† ⊗ ω†. Correspondingly, we have |ν ′

i〉 = µ ⊗ ω|νi〉, i.e. A′
i = µAiω

t for
i = 1, . . . , n. As to the ancillary invariants, if ρi, θi, i = n + 1, . . . , N2, are the ancillary
matrices associated with ρ, we can choose ρ ′

i = µρiµ
†, θ ′

i = ωθiω
†, i = n + 1, . . . , N2,

for ρ ′. Therefore, ρ ′
i = A′

iA
′†
i = µρiµ

†, θ ′
i = At

iA
∗
i = ωθiω

†, i = 1, . . . , N2. It
is straightforward to verify that the quantities in (10) are invariants under local unitary
transformations, e.g. �(ρ ′)ij = Tr(ρ ′

iρ
′
j ) = Tr(µρiρjµ

†) = Tr(ρiρj ) = �(ρ)ij ,�(ρ ′)ij =
Tr(θ ′

i θ
′
j ) = Tr(ωθiθjω

†) = �(ρ)ij , i, j = 1, . . . , N2.
Conversely, we suppose that the states ρ = ∑n

i=1 λi |νi〉〈νi | and ρ ′ = ∑n
i=1 λ′

i |ν ′
i〉〈ν ′

i |
give the same values to the invariants in (3) and (5). And there exist ancillary matrices
ρi, ρ

′
i , θi, θ

′
i , i = n + 1, . . . , N2, such that they have the same values of (6) and the ancillary

invariants in (7) and (9). ρ and ρ ′ can be proved to be equivalent under local unitary
transformations by using the method in [10]. Having the same values of (6) implies that ρ ′ and
ρ have the same nonzero eigenvalues, λ′

i = λi, i = 1, . . . , n. Condition (8), det(�̃(ρ)) �= 0,
implies that {ρi}, i = 1, . . . , N2, span the space of N × N matrices and therefore

ρiρj =
n∑

k=1

Ck
ijρk, Ck

ij ∈ C, (11)

which gives rise to �̃ij = ∑n
k=1 Ck

ij . Hence, X̃ijk = ∑n
l=1 Cl

ij �̃lk and

Cl
ij =

n∑
k=1

X̃ijk�̃
lk, (12)

where the matrices �̃ij are the corresponding inverses of the matrices �̃ij . We have that
{ρi} form an irreducible N-dimensional representation of the algebra gl(N, C) with structure
constants Ck

ij − Ck
ji . Similarly, {ρ ′

i}, i = 1, . . . , N2, also form an irreducible N-dimensional
representation of the algebra gl(N, C) with same structure constants. These two sets of
representations of the algebra gl(N, C) are equivalent, ρ ′

i = uρiu
†, for some unitary u.

Similarly, from �̃(ρ) = �̃(ρ ′) and Ỹijk(ρ) = Ỹijk(ρ
′) we can deduce that θ ′

i = w†θiw, for
some unitary w. From the singular value decomposition of matrices, we have |ν ′

i〉 = u⊗w|νi〉,
i = 1, . . . , n, and ρ ′ = u ⊗ wρu† ⊗ w†. Hence, ρ ′ and ρ are equivalent under local unitary
transformations. �

Remark. The invariants in (10) could be redundant. For example, when ρ and ρ ′ are 2 × 2
pure states, one only needs Tr ρ1ρ1 = Tr ρ ′

1ρ
′
1 for verifying their equivalence. But for higher

dimensional systems, all these invariants are needed for generic states. Moreover, when ρ and
ρ ′ have equal nonzero eigenvalues, if they are equivalent under local unitary transformations,
we can always find a set of eigenvectors suitably labelled such that they have the same invariants
(10), as seen from the proof.

As an example, let

|ψ1〉 = 1√
2
(|00〉 + |11〉), |ψ ′

1〉 = 1√
2
(|01〉 + |10〉)
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and

|ψ2〉 = |01〉, |ψ ′
2〉 = |00〉.

We consider

ρ = 1
3 |ψ1〉〈ψ1| + 2

3 |ψ2〉〈ψ2|, ρ ′ = 1
3 |ψ ′

1〉〈ψ ′
1| + 2

3 |ψ ′
2〉〈ψ ′

2|.
These matrices have the same eigenvalues. The corresponding eigenvectors give rise to

ρ1 = θ1 = ρ ′
1 = θ ′

1 =
(

1
2 0

0 1
2

)
,

ρ2 = ρ ′
2 = θ ′

2 =
(

1 0
0 0

)
, θ2 =

(
0 0
0 1

)
.

By direct calculations, we have

�(ρ) = �(ρ ′) =
(

1
2

1
2

1
2 1

)
= �(ρ) = �(ρ ′),

X(ρ)ijk = X(ρ ′)ijk = Y (ρ)ijk = Y (ρ ′)ijk

=




1, if i = j = k = 2,

1
4 , if ijk ∈ {111, 112, 121, 211},
1
2 , for the rest.

So det(�) = det(�) = 1
2 �= 0 for both ρ, ρ ′, and they are generic states. We choose the

ancillary matrices as

ρ3 = ρ ′
3 =

(
0 1
0 0

)
= θ3 = θ ′

4, ρ4 = ρ ′
4 =

(
0 0
1 0

)
= θ4 = θ ′

3.

We have

�̃(ρ) = �̃(ρ ′) =




1
2

1
2 0 0

1
2 1 0 0

0 0 0 1

0 0 1 0


 = �̃(ρ) = �̃(ρ ′)

and

X̃(ρ)ijk = X̃(ρ ′)ijk =




X(ρ)ijk, i, j, k = 1, 2,

1
2 , ijk ∈ {134, 341, 413, 143, 431, 314},
1, ijk ∈ {234, 342, 423},
0, for else,

Ỹ (ρ)ijk = Ỹ (ρ ′)ijk =




X(ρ)ijk, i, j, k = 1, 2,

1
2 , ijk ∈ {134, 341, 413, 143, 431, 314},
1, ijk ∈ {243, 432, 324},
0, for else.

From the theorem we can conclude that ρ and ρ ′ are equivalent under local unitary
transformations.
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We have studied the equivalence of two bipartite states with arbitrary dimensions by
using some ancillary invariants under the unitary transformation. This method applies to all
the bipartite generic density matrices. As for the non-generic states, i.e. the states satisfying
det(�(ρ)) = 0 or det(�(ρ)) = 0 or both, we can deal with the problem in the following
way. If det(�(ρ)) = 0, i.e. ρi, i = 1, . . . , n, are linear dependent, we choose the maximal
linear independent subset (denote as S) of {ρi, i = 1, . . . , n}. For two states ρ and ρ ′ with
the same invariants in (10), we only need to find a unitary matrix µ satisfying ρ ′

i = µρiµ
†

for ρi ∈ S and ρ ′
i ∈ S ′. According to the subset S, we can get submatrices of �(ρ) and

X(ρ). We denote these submatrices as �̄(ρ), X̄(ρ). We extend them to matrices �̃(ρ), �̃(ρ)

instead of �(ρ),X(ρ). Then using the theorem and the relation between S (resp. S ′) and
{ρi, i = 1, . . . , n} (resp. {ρ ′

i , i = 1, . . . , n}), we can get ρ ′
i = µρiµ

†, i = 1, . . . , n, for some
unitary matrix µ. The case of det(�(ρ)) = 0 can be similarly treated.
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